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NOËL MIDOUX AND HUAI Z. LI

Laboratoire des Sciences du Génie Chimique (UPR 6811 CNRS), ENSIC-INPL,
1, rue Grandville, BP 451, 54001 Nancy Cedex, France

(Received 20 May 2005 and in revised form 9 September 2005)

The dynamics of a single bubble rising in a viscous Newtonian fluid was investigated
both experimentally by a particle image velocimetry (PIV) device and numerically
using the free-energy-based lattice Boltzmann (LB) model. The rise velocity, bubble
shape and flow field were considered for various bubble volumes in axisymmetric
flow conditions. Experimentally, the flow measurements by the PIV device revealed
the wake increasing with the bubble volume. Such an evolution is linked to the
deformation of bubble shape from spherical for small bubbles to flattened at the
bottom for large bubbles. The LB simulations compare satisfactorily with our
experimental data for both the bubble shape and drag coefficient over the range
of Reynolds number (0.033 � Re � 1.8). With a more extended flow structure
around the bubble compared to experiments, the two-dimensional approach shows
some limitations in its quantitative description. Fully three-dimensional simulations
are necessary, especially for bigger bubbles with Re > 1.8.

1. Introduction
The motion of bubbles in a liquid has been the focus of both academic and practical

interest for a long time. A huge literature has been generated (Clift, Grace & Weber
1978; Sadhal, Ayyaswamy & Chung 1997). The central problem is the relationship
between the rise velocity, bubble shape due to the interface deformation and flow field.
For example, the deformation of a bubble rising in an inviscid or viscous liquid has
been experimentally studied by Hnat & Buckmaster (1976), Bhaga & Weber (1981)
and Maxworthy et al. (1996). Approximate theoretical solutions have been developed
in the limit of very small deformation of bubbles for either high (Moore 1959) or low
(Taylor & Acrivos 1964) Reynolds numbers.

In the case of very viscous fluids, there are also numerous applications that require
knowledge of the rise of bubbles either individually or in an interacting cloud, such
as volcanic eruption (Morrissey & Chouet 1997; Rust, Manga & Cashman 2003),
metallurgy (Xie & Oeters 1994), wastewater treatment (Cui, Chang & Fane 2003) and
fermentation (Kilonzo & Margaritis 2004). Aside from the terminal velocity usually
estimated by empirical correlations (Rodrigue 2001), we know little about the flow
field around a bubble in such fluids.

The lattice Boltzmann (LB) method, emerging from theoretical physics studies on
lattice gas automata, has recently become an interesting alternative to the classical
computational fluid dynamics. In a multiphase flow context, LB has been successfully
applied to various classical problems, like bubbly flows in narrow channel (Yang,
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Palm & Sehgal 2002), phase transition (Martys & Douglas 2001) and bubbles rising in
non-Newtonian fluids (Frank & Li 2005). Sankaranarayanan et al. (2002) focused on
the computation of drag and virtual mass forces in a regular array of uniformly sized
bubbles with a Reynolds number ranging from 50 to 400, and observed no difference
between two- and three-dimensional simulations. In this paper, we present an
investigation of axisymmetric bubble motion in a viscous Newtonian fluid both by the
LB scheme and experimentally. For small Reynolds number, both the axisymmetric
bubble shape and flow structure are particularly suitable for experimental investigation
and validation of the LB method. To our best knowledge, there exist neither LB
simulation nor flow field measurements by particle image velocimetry (PIV) around
a rising bubble for small Reynolds number except for the qualitative visualization by
Bhaga & Weber (1981) through the hydrogen bubble tracer technique.

2. Lattice Boltzmann approach
Fluids are described statistically at the microscopic level within the framework of

the lattice Boltzmann scheme. Particle probability density functions (PPDF) fi (r, t)
represent the number of particles having velocity ci at point r and time t . The LB
approach consists of computing the evolution of fi (r, t), due to advection and colli-
sions of particles. Particles can move only on the nodes of a lattice, the classical D2Q9
lattice is used in the present work, which is a two-dimensional lattice involving nine
particle velocities ci . The main macroscopic quantities are deduced from the PPDF.

Several LB approaches have been proposed in the literature for modelling
multiphase flows (Yang et al. 2002; Nourgaliev et al. 2003), but there is no consensus.
The pseudo-potential approach developed by Shan & Chen (1994) stems from pairwise
molecular interactions. The physical meaning is that at each lattice site, the net force
experienced by a particle of a species is the sum of the momentum exchanges with
particles of all other species in the neighbourhood. The attractive features of this
model are the ease implementation and the spontaneous separation between phases.
Unfortunately, some numerical fluctuations such as spurious velocities arise near the
interface due to the lack of local momentum conservation. An improvement in the
thermodynamic consistency was realized in the free-energy approach with a pressure
tensor Pαβ (Swift, Osborn & Yeomans 1995). The main merit of this model is that the
fluid must reach the right thermodynamic equilibrium directly within the framework of
the correct thermodynamic equation of state. In particular, the free-energy approach
leads to significant reduction of the velocity fluctuations near the interface and ensures
a satisfactory isotropy of the surface tension. This second advantage is particularly
useful for the modelling of the rise of a bubble in a fluid. There are however criticisms
related to the rigorous thermodynamic consistency as well as to the possible exposure
to higher-order lattice artefacts, but these shortcomings are likely to be problem-
dependent. In the case of the rise of a bubble in a viscous Newtonian fluid, we did
not experience such difficulties. To conserve the Galilean invariance, the LB scheme
used in this work is for a two-component and binary system.

In the present study, air bubbles are assimilated as drops of fluid A in a viscous
liquid B . The densities of components A and B of the binary fluid are respectively
ρA and ρB; ρ = ρA + ρB is the total density and �ρ = ρA − ρB the density difference.
Macroscopic fields, ρ, �ρ and u, are expressed as functions of fi (r, t) and gi (r, t) by

ρ =
∑

i

fi, ρuα =
∑

i

ficiα, �ρ =
∑

i

gi . (1.1a–c)
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A quantity τf is linked to spatial step δx, time step δt , fluid viscosity η and fluid
density ρF by η = τf ρF δtc2

s c
2 (Nourgaliev et al. 2003), where c = δx/δt and cs is the

pseudo-sound speed in lattice units. τg is another dimensionless time parameter equal
to 1 here. With such definitions, we can then compute the time step:

δt =
ρF τf c2

s δx2

η
. (1.2)

Velocities in real units are deduced from the lattice units via Uα = cuα . As the
vector a (r, t) is an external acceleration, distributions fi and gi obey the so-called
lattice Bhatnagar–Gross–Krook (LBGK) equation

fi (r + ci , t + 1) − fi (r, t) = − 1

τf

(
fi − f

eq
i

)
+

a · (ci − u)

c2
s

f
eq
i , (1.3a)

gi (r + ci , t + 1) − gi (r, t) = − 1

τg

(
gi − g

eq
i

)
. (1.3b)

Equilibrium values of the PPDF are deduced from macroscopic quantities:∑
i

f
eq
i = ρ,

∑
i

f
eq
i ciα = ρuα,

∑
i

f
eq
i ciαciβ = ρuαuβ + Pαβ, (1.4a–c)

∑
i

g
eq
i = �ρ,

∑
i

g
eq
i ciα = �ρuα,

∑
i

g
eq
i ciαciβ = �ρuαuη + �µδαβ. (1.4d–f )

The chemical potential difference �µ and the pressure tensor Pαβ are defined by
the well-known expressions

Pαβ = P δαβ + κ(∂αρ∂βρ + ∂α�ρ∂β�ρ), (1.5a)

P = ρc2
s − κ(ρ ∂α∂αρ + �ρ ∂α∂α�ρ) − 1

2
κ(|∂αρ|2 + |∂α�ρ|2), (1.5b)

�µ = 1
2
c2
s ln

(
ρ + �ρ

ρ − �ρ

)
− 1

2
λ
�ρ

ρ
− κ∂α∂α�ρ. (1.5c)

For the phase interaction parameter λ > 2c2
s , the above scheme leads to spontaneous

phase segregation (Swift et al. 1995). As a consequence, the interface does not require
specific numerical tracking. Within the framework of the free-energy scheme, the
parameter κ is closely linked to the surface tension. However, a shortcoming, is that
there is still no rigorous physical understanding to allow its theoretical prediction
for various gas–liquid systems. In the case of air bubbles rising in glycerol, we have
made LB simulations with various values of κ to compare with the simplest visual
parameter, which is the bubble’s shape. For quite different bubble volumes ranging
from spherical to spherical cap shape, a constant and fixed value κ = 0.02 was found
to be the best for describing the bubble’s shape. From a physical point of view, this
requires further investigation both theoretically and experimentally.

The external force a depends mainly on �ρ: a = −g in gas, and a = 0 in liquid,
the g vector being gravity in dimensionless form.

To initiate the simulation, spherical bubbles of different volumes are placed at the
bottom of a box 200 nodes wide and 400 nodes high and representing a liquid column
of 7 cm large and 14 cm height. This is the compromise that we found between a satis-
factory comparison with experimental data and acceptable computation time on a PC
for the considered range of bubble volumes. To isolate the bubble, at the left and right
boundaries solid wall boundary conditions are applied as in the experimental case, as
well as at the top and bottom. The simulation section covered by the LB nodes is high
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Figure 1. LB simulation: variation of the rise velocity towards an asymptotic terminal value
for a bubble of V0 = 1100mm3.

enough for a bubble to reach a stationary rise regime before approaching the top and
sufficiently wide to avoid possible wall effects under deformable interface conditions.

After thermodynamic equilibrium is obtained, iterations with buoyancy are per-
formed and useful data (velocity field, bubble shape) are stored. For each simulation,
the stationary rise regime is effectively reached. In figure 1, the evolution of the rise
velocity is illustrated for a bubble of volume V0 = 1100 mm3 and the terminal rise
velocity can be easily determined. Another example is shown in figure 2 for the vari-
ation of the bubble shape from an initial sphere to a stationary shape with a flattened
bottom. This is accompanied by the modification of the flow field around the bubble.

3. Experimental setup
The experiments were conducted in a Plexiglas cylindrical tank (0.24 m diameter

and 1 m height), enclosed by a square duct (0.33 m) to eliminate optical distortions
for visualization as well as to keep the liquid temperature inside the cylindrical tank
at 293 K. Air bubble generation was through an orifice of 1 mm diameter, submerged
in the liquid in the centre of the bottom section of the tank. An electronic valve
of rapid response controlled by a PC allowed injection of individual bubbles of a
desired volume by varying the open duration of the valve or the air pressure inside a
4×10−3 m3 reservoir. The bubble rise velocity was measured by both optical laser and
photodiodes probes placed at different heights and a particle image velocimetry (PIV,
Dantec Dynamics) device and bubble shapes were extracted from video recording
and digitization.

The viscous Newtonian fluid used in this work was 99.5 % glycerol (Dow Europe)
with some water trace due to humidity. Its density was 1261 kgm−3. A Rheometrics
Fluid Spectrometer RFS II (Rheometric Scientific) was employed to measure the
fluid viscosity, which was 1.20 Pa s, and the air–glycerol surface tension measured on
a Krüss Tensiometer K100 was 62 mN m−1.

The flow field was measured by means of a PIV device composed of two YAG
laser, a camera, a cross-correlator and a computer. In the viscous glycerol solution,
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Figure 2. LB simulation of the transient rise of a bubble of volume V0 = 900 mm3 initially
spherical at rest. (a) t = 0.021 s, (b) t = 0.065 s, (c) t = 0.108 s, (d) t = 0.151 s in the terminal
rise regime.

bubbles were perfectly axisymmetric, and displayed neither shape nor trajectory
oscillations within the range of bubble volumes studied. The flow field was also found
to be axisymmetric. Hence, two-dimensional measurements in a plane crossing the
symmetry axis of a rising bubble lead to a complete knowledge of the flow field
around the bubble. The fluid was injected with fluorescent polymer beads of 75 µm
diameter and comparable density as seeding particles. An orange filter placed in front
of the camera eliminated the reflections of the lasers on the bubbles and allowed only
the passage of the fluorescent light from the seeding particles. The two laser sheets
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Figure 3. Flow field in glycerol around a bubble of volume (i) V0 = 200mm3 and
(ii) V0 = 1100 mm3. (a) LB simulations with the computed bubble shape. (b) PIV measurements
with the real bubble shape.

crossed the vertical symmetry axis of the bubble. The camera, placed perpendicular to
the laser sheets, took two successive images, each at the maximum intensity of the laser
impulse. These images were divided into several thousand small interrogation areas
of 32 × 32 pixels. A cross-correlation was then performed on the two corresponding
interrogation areas to give the instantaneous flow field.

4. Results
As shown in figure 3 and figure 4, experimental flow fields are in qualitative

agreement with the LB simulations for a small and large bubble. Note that the
magnitude of the velocity fields of the experiments and the LB simulation is
comparable. Both exhibit an upward flow at the top and bottom of the bubble,



Bubbles in a viscous liquid: simulation and experimental validation 119

0.02 0.04 0.060

0.02

0.04

0.06

0.08

(a) (i) (b) (i)

(a) (ii) (b) (ii)

y 
(m

)

0 0.02 0.04 0.06

0.02

0.04

0.06

0.08

0.10 0

20

40

60

80

20 40 600

0

20

40

60

80

20 40 600

x (m)

y 
(m

)

x (m)

Figure 4. Streamlines in glycerol around a bubble of volume (i) V0 = 200 mm3 and
(ii) V0 = 1100 mm3. (a) LB simulations with the computed bubble shape. (b) PIV measurements
with the real bubble shape.

downward flow occurring at the edge of the column due to mass conservation.
Streamlines of the flow around a rising bubble confirm the recirculation between the
upward flow in the front of bubbles and that in the wake at the side of the bubble.
This recirculation region expands space with an increase of the bubble volume.

These flow features can be closely linked to the results on the bubble shape
(figure 5) where the experimental visualization compares well with the LB simulations.
The experimental Reynolds, Eötvös and Weber numbers as well as the simulation
Reynolds number are also indicated in figure 5. In spite of its relationship with
the classical surface tension, the parameter κ in the LB scheme cannot allow a
straightforward estimation for the Eötvös and Weber numbers. For small bubbles,
the shape is spherical, and for larger bubbles the bottom is progressively flattened
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Figure 5. Some examples of the variation of bubble shape in glycerol with the bubble
volume V0, Re, Eo and We from experiments, and Re from LB simulations; (a) experimental
visualization; (b) LB computation.
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Figure 6. Variation of the drag coefficient CD with the Reynolds number Re in glycerol.

whereas the top remains spherical, as found by other workers. The bubble’s shape
deformation can be regarded as a natural consequence of the fluid flow fields as the
upward flow in the wake and the recirculation at the side are both increased with
an increase of the bubble volume and flatten the bubble bottom towards a spherical
cap shape. The effect of the shape deformation on the rise velocity of bubbles can
be established by comparing the drag coefficient predicted by the LB approach with
our experimental data obtained in the viscous glycerol fluid (figure 6). The theoretical
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drag coefficient was directly determined from the rise velocity computed by the LB
simulation. For Re � 0.40 corresponding to a bubble volume of V0 � 200 mm3 where
the Hadamard–Rybczynskis drag expression is valid for a spherical bubble, the LB
simulations compare satisfactorily with the experimental results. Above this critical
value, accompanying the beginning of the shape deformation, the LB simulations are
still in reasonable agreement with the experimental data but with increasing deviation.

As numerous multiphase flow situations exist where the fluid dynamics can
be approximated as axisymmetric (Eggers 1997; Sussman & Smereka 1996), a
two-dimensional approach is clearly a good approximation for three-dimensional
phenomena. In particular, the working fluid in this study is very viscous with a Morton
number of 67.7, and the two-dimensional LB simulation compares satisfactorily with
the experiments, especially for the drag coefficient, which is a mean description, and
for the bubble shape, which is not far from spherical. However, local differences
exists between the simulation and experiments in both flow field and streamlines
as shown in figure 3 and figure 4: the simulated flow structure is more extended
than the two-dimensional measurements by the PIV device. This can be attributed
to the macroscopic conservation laws such as for mass and momentum within the
two-dimensional framework. Even for the drag coefficient, a deviation occurs for
Re > 1.8 as the axisymmetric assumption is no longer valid (figure 6). In this case,
a three-dimensional LB approach with parallel computation should be employed. In
particular, a three-dimensional approach is essential for a study on the interactions
and coalescence between bubbles with noticeable shape evolution and non-symmetric
wake structure. This is an avenue we are currently exploring both experimentally by
PIV measurements and numerically by the LB approach.

5. Conclusion
In summary, the lattice Boltzmann simulation captures the main features of the

flow field, shape and rise velocity of bubbles in a viscous Newtonian fluid. These
results are validated by a PIV device for the flow fields, camera visualization for the
bubble shape and terminal velocity measurements. However, the two-dimensional LB
simulations are limited to bubbles of a terminal rise Reynolds number under 1.8
to maintain the axisymmetric flow conditions. The apparent inadequacy of a two-
dimensional approach is also obvious in the detailed quantitative comparison with
experimental flow fields around a bubble. We are currently conducting fully three-
dimensional studies for large bubbles and in particular for in-line interactions and
coalescence between bubbles. For physical scales, we are also performing experiments
in other fluids of varying viscosity and surface tension.
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